Baroclinic Vorticity Production in Protoplanetary Disks Part I: Vortex Formation
نویسنده
چکیده
The formation of vortices in protoplanetary disks is explored via pseudospectral numerical simulations of an anelastic-gas model. This model is a coupled set of equations for vorticity and temperature in two dimensions which includes baroclinic vorticity production and radiative cooling. Vortex formation is unambiguously shown to be caused by baroclinicity because (1) these simulations have zero initial perturbation vorticity and a nonzero initial temperature distribution; and (2) turning off the baroclinic term halts vortex formation, as shown by an immediate drop in kinetic energy and vorticity. Vortex strength increases with: larger background temperature gradients; warmer background temperatures; larger initial temperature perturbations; higher Reynolds number; and higher resolution. In the simulations presented here vortices form when the background temperatures are ∼ 200K and vary radially as r, the initial vorticity perturbations are zero, the initial temperature perturbations are 5% of the background, and the Reynolds number is 10. A sensitivity study consisting of 74 simulations showed that as resolution and Reynolds number increase, vortices can form with smaller initial temperature perturbations, lower background temperatures, and smaller background temperature gradients. For the parameter ranges of these simulations, the disk is shown to be convectively stable by the Solberg-Høiland criteria.
منابع مشابه
Baroclinic Vorticity Production in Protoplanetary Disks Part II: Vortex Growth and Longevity
The factors affecting vortex growth in convectively stable protoplanetary disks are explored using numerical simulations of a two-dimensional anelasticgas model which includes baroclinic vorticity production and radiative cooling. The baroclinic feedback, where anomalous temperature gradients produce vorticity through the baroclinic term and vortices then reinforce these temperature gradients, ...
متن کاملThe Formation and Role of Vortices in Protoplanetary Disks
We carry out a two-dimensional, compressible, simulation of a disk, including dust particles, to study the formation and role of vortices in protoplanetary disks. We find that anticyclonic vortices can form out of an initial random perturbation of the vorticity field. Vortices have a typical decay time of the order of 50 orbital periods (for a viscosity parameter α = 10 and a disk aspect ratio ...
متن کاملLarge-scale Vortices in Protoplanetary Disks: On the observability of possible early stages of planet formation
We investigate the possibility of mapping large-scale anti-cyclonic vortices, resulting from a global baroclinic instability, as pre-cursors of planet formation in proto-planetary disks with the planned Atacama Large Millimeter Array (ALMA). On the basis of three-dimensional radiative transfer simulations, images of a hydrodynamically calculated disk are derived which provide the basis for the ...
متن کاملThree-Dimensional Vortices in Stratified Protoplanetary Disks
We present the results of high-resolution, three-dimensional (3D) hydrodynamic simulations of the dynamics and formation of coherent, long-lived vortices in stably-stratified protoplanetary disks. Tall, columnar vortices that extend vertically through many scale heights in the disk are unstable to small perturbations; such vortices cannot maintain vertical alignment over more than a couple scal...
متن کاملVortices in Protoplanetary Disks
We use a high order accuracy spectral code to carry out two-dimensional time-dependent numerical simulations of vortices in accretion disks. In particular , we examine the stability and the life time of vortices in circumstellar disks around young stellar objects. The results show that cyclonic vortices dissipate quickly, while anticyclonic vortices can survive in the flow for many orbits. When...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006